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We calculate two-dimensional �2D� photon-echo and double-quantum-coherence spectra of two coupled
InGaAs/GaAs quantum dots at various distances, taking into account electron, hole, and exciton hopping.
Signatures of direct and indirect excitons in two-exciton resonances are revealed. At short distances, electron
delocalization contributes to the creation of new biexcitonic peaks, and dipole-dipole interactions shift the
two-exciton energies.
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I. INTRODUCTION

The optical response of confined excitons in semiconduc-
tor quantum dots �QDs� has been studied extensively.1–3 The
ability to control their electronic properties makes them ideal
candidates for studying fundamental many-body effects.4–6

In addition, they are promising candidates for numerous ap-
plications, including fluorescence labels of biomolecules,7

lasers,8 solar cells,9 and quantum computing.10 Arrays of
QDs were proposed as building blocks in quantum informa-
tion applications, e.g., as a quantum register for noiseless
information encoding.11 Biexcitons have been suggested as a
source of entangled photons.12 Much effort has been devoted
to the investigation of the coupling between the dots, either
due to exciton13,14 or carrier migration.15–17 However, both
coupling mechanisms may coexist, and separating them is of
considerable interest.

Two-dimensional �2D� spectroscopy provides a new tool
for studying coupled excitons in molecular aggregates,18

photosynthetic complexes,19 semiconductor quantum wells,20

and QDs.17,21 In these experiments, the system is subjected to
three temporally well separated femtosecond pulses propa-
gating in the directions k1, k2, and k3 and centered at times
�1, �2, and �3 �Fig. 1�. 2D signals of two coupled quantum
wells were simulated recently using a free-carrier model, ne-
glecting Coulomb interactions and many-body effects such
as biexcitons.22 In this paper, we shall calculate these signals
for a system of two coupled quantum dots. This QD mol-
ecule is described by a tight-binding two-band Hamiltonian
for electrons and holes,23 taking into account interdot elec-
tron and hole hoping along with monopole-monopole and
dipole-dipole Coulomb interactions. We use realistic param-
eters for the system studied in Refs. 16 and 24. The Hamil-
tonian is recast in terms of e-h pair variables, truncated at the
two-exciton manifold.25 We consider two types of hetero-
dyne detected signals,26 SI and SIII, generated in the phase-
matching directions kI=−k1+k2+k3 �photon echo�, and kIII
= +k1+k2−k3 �double-quantum coherence�, respectively.
Both are recorded as a function of time delays t1=�2−�1,
t2=�3−�2, and t3= t−�3, where t is the detection time. 2D
spectra, obtained by a Fourier transform of SI with respect to
t1 and t3, SI��3 , t2 ,�1�, and of SIII with respect to t2 and t3,
SIII��3 ,�2 , t1�, reveal exciton correlations and two-exciton
resonances.27 The signals are obtained by solving the nonlin-

ear exciton equations �NEE�,27,28 which account for exciton-
exciton interactions and their quasibosonic nature.17,29 To
classify biexciton states in terms of their single-exciton con-
stituents, we analyze both the SI and SIII signals using the
corresponding sum-over-states expressions �SOS�.27 The
roles of different coupling mechanisms at various interdot
distances d is discussed. We show that at short distances
electron delocalization contributes to the creation of new
biexcitonic peaks in the spectra, while exciton hopping shifts
the two-exciton peaks.

In Sec. II we present our model Hamiltonian for two
coupled quantum dots. In Sec. III we discuss the variation in
the absorption spectra and single-exciton eigenstates with in-
terdot distance. In Sec. IV we present the photon echo and
double-quantum coherence spectra and identify the biexci-
tonic contributions. Summary and conclusions are given in
Sec. V.

II. MODEL HAMILTONIAN FOR TWO COUPLED
QUANTUM DOTS

We consider a system of two vertically stacked, lens-
shaped InGaAs/GaAs QDs of height 2 nm and radius 10 nm
aligned along the z axis.24 It is described by the tight-binding
two-band Hamiltonian,23,30

HQD = H0 + HC. �1�

Here H0 represents noninteracting electrons and holes, and
HC are the Coulomb interactions. Due to quantum confine-
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FIG. 1. The pulse sequence in a four-wave-mixing experiment:
the system is excited by three pulses propagating at directions k1,
k2, and k3 and centered at times �1, �2, and �3, respectively. The
signal is heterodyne detected in the phase-matching direction ks at
time t.
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ment, the conduction and valence bands split into discrete
atomiclike levels. Each dot in InGaAs has two spin-
degenerate electron states, with angular-momentum quantum
numbers �J ,M�= � 1

2 , �
1
2 �, and two heavy-hole states

� 3
2 , �

3
2 �. The free-carrier Hamiltonian has the form,17,28

H0 = �
m1n1

tm1n1

�1� ĉm1

† ĉn1
+ �

m2n2

tm2n2

�2� d̂m2

† d̂n2
�2�

where the indices 1 �2� correspond to electrons �holes� in the
conduction �valence� band. The subscripts, e.g., m1
= �Rm1

,�m1
�, describe the QD position R= �T ,B� �“T” for top

and “B” for bottom� and the spin projection � of the carrier
�↑ ,↓ for up or down-spin projection, respectively�. The cre-
ation and annihilation operators of an electron �hole� in site
Rm1

�Rm2
� with spin z component �m1

��m2
� are ĉm1

† and ĉm1

�d̂m2

† and d̂m2
�. These satisfy the Fermionic algebra,

�ĉm1
, ĉn1

† � � ĉm1
ĉn1

† + ĉn1

† ĉm1
= �m1n1

, �3�

�d̂m2
, d̂n2

† � = �m2n2
. �4�

All other anticommutators are zero. The diagonal elements
of t�1� and t�2� give the electron and hole energies, while
off-diagonal elements represent carrier hopping in the con-
duction and valence bands, respectively.

The Coulomb interaction is

HC =
1

2 �
m1n1

Vm1n1

ee ĉm1

† ĉn1

† ĉn1
ĉm1

+
1

2 �
m2n2

Vm2n2

hh d̂m2

† d̂n2

† d̂n2
d̂m2

− �
m1n2

Vm1n2

eh ĉm1

† d̂n2

† d̂n2
ĉm1

+ �
m1m2n1n2

Rm1
=Rm2

�Rn1
=Rn2

Vm1m2,n1n2

F ĉm1

† d̂m2

† d̂n2
ĉn1

. �5�

The first three terms are monopole-monopole contributions
of electron-electron, hole-hole, and electron-hole interac-
tions, respectively. Pseudopotential calculations, including
strain and realistic band structure, have been performed for
this system.16,24 The on-site energies, hopping parameters,
and Coulomb interaction energies have been reported vs in-
terdot distance. Electrons tunnel at short ��8 nm� distances
creating delocalized bonding and antibonding one-particle
states. The heavy holes however remain localized, even at
short d��8 nm�, but their energies are lowered with de-
creasing distance. This is due to the high interdot barrier for
the heavy holes, which suppresses hole tunneling �the heavy-
hole-electron effective-mass ratio is mhh /me�0.4 /0.06�6�,
as well as to the effect of strain and band structure. We will
use the parameters from Ref. 24, as listed in Table I, and
assume Vee=Vhh=−Veh.

The last term in Eq. �5� describes the electrostatic dipole-
dipole interactions between the charge distributions in the
QDs which induce exciton hopping,13,14,31

Vm1m2,n1n2

F =
1

�rmn
3 ��m1m2

· �n1n2

−
3��m1m2

· rmn���n1n2
· rmn�

rmn
2 	 , �6�

where � is the dielectric constant, �m1m2
is the interband

dipole moment at site Rm1
=Rm2

�Rm, and rmn= 
Rm−Rn
 is
the distance between sites m and n. Equation �6� has been
shown to be adequate for direct-gap semiconductor quantum
dots of radius 0.5–2 nm even when they are almost in
contact.13,32

The interaction with the optical field in the rotating wave
approximation is described by the Hamiltonian,

Hint�t� = − �E�t� · V̂† + H.c.� , �7�

where V̂=�m1m2
�m1m2

d̂m2
ĉm1

is the dipole moment annihila-
tion operator, and E�t� is the negative frequency part of the
optical field. The interband dipole moment �m1m2

at site
Rm1

=Rm2
is given by17,33

�↑↑ =
�

2
�x̂ + iŷ� �↓↓ =

�

2
�x̂ − iŷ� , �8�

where x̂ and ŷ are the polarization directions of the optical
pulses. The measured dipole moments in InGaAs quantum
dots are �=25–35 D.34

The total Hamiltonian for the QD molecule-light system
is

H = HQD + Hint�t� . �9�

Using the method proposed by Chernyak and Mukamel,25

Hamiltonian �9� can be transformed into the excitonic repre-
sentation by introducing the electron-hole pair operators,

TABLE I. Hamiltonian parameters for a system of two vertically
stacked quantum dots, labeled as T �top� and B �bottom�, obtained
from Ref. 24: electron and hole on-site energies �Ee, Eh�, tunneling
couplings �te, th�, as well as e-h Coulomb interaction elements �Veh�
vs interdot distance.

Parameter
�meV� Distance dependence �d in nm�

ET
e 1450−436d−1+3586d−2−7382d−3

EB
e 1449−452d−1+3580d−2−6473d−3

ET
h 167+129d−1−2281d−2+6582d−3

EB
h 163+274d−1−3780d−2+9985d−3

te −255 exp�−d /2.15�
th −4.25 exp�−d /3.64�
VBB

eh −29.0+7.98 /d

VTT
eh −29.6+19.6 /d

VBT
eh −99.1 /d2+3.722

VTB
eh −98.5 /d2+4.212
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B̂m1m2

† = ĉm1

† d̂m2

† , B̂m1m2
= d̂m2

ĉm1
. �10�

The main steps of this transformation are given in Appendix
A. The transformed Hamiltonian will be used in Secs. III and
IV to study the one and two-exciton properties.

III. SINGLE-EXCITON MANIFOLD AND THE
ABSORPTION SPECTRUM

The absorption spectrum was calculated by a Fourier
transform of the linear response obtained by Eq. �B7�. It is
given by26

A�	� 
 Im��
e


�eg
2

	 − Ee + i�eg
	 , �11�

where e denotes single-exciton states with energy Ee and
dephasing rate �eg. We set �=0.05 meV, obtained from the
measured linewidths in a similar system.15 The single-
exciton block of the Hamiltonian has four fourfold spin-
degenerate eigenstates. Since spin does not affect the absorp-
tion, we will drop it here, but include it in the nonlinear
response in Sec. IV, since two-exciton states may be formed
by single excitons of different spins.

The single-exciton eigenstates 
��, 
�, 
��, and 
�� are
expanded in the basis �Fig. 2�,


a� = ĉB
† d̂B

† 
g� 
c� = ĉB
† d̂T

† 
g�


b� = ĉT
† d̂T

† 
g� 
d� = ĉT
† d̂B

† 
g� �12�

where B �T� denotes the bottom �top� QD, and 
g� is the
ground state. 
a� and 
b� describe direct excitons, while 
c�
and 
d� are indirect excitons.

The variation of the simulated absorption spectra with in-
terdot distance d is shown in Fig. 3. At large distances �d
=17 nm�, the two QDs are uncoupled and indirect excitons
are optically forbidden. Because of QD slight asymmetry
�see Table I�, there are two peaks corresponding to direct
excitons 
��= 
a� and 
�= 
b�.

As the distance is decreased, the absorption peaks are
blueshifted and their splitting is reduced. This is due to the
decreasing hole energies, as well as to the electron tunneling,
which leads to carrier delocalization. As shown in Fig. 2,
exciton splitting is minimized at d=8.6 nm, where the
single-exciton eigenstates are approximately given by


�� � 
a� + 
b� 
�� � 
c� ,


� � 
a� − 
b� 
�� � 
d� , �13�

with energies E��E�E��E�. The QD-localized excitons
at large d now become strongly entangled bonding and anti-
bonding excitons. At the same time, indirect excitons appear.
These are blueshifted since their binding energy is smaller
than for the direct excitons, due to the reduced Coulomb
attraction.

At shorter distances, the two lower excitons anticross,
while the contribution of the two upper ones in the absorp-
tion spectrum become stronger. The exciton eigenstates now
form bonding and antibonding states,


�� � 
b� + 
c� 
�� � 
b� − 
c� ,


� � 
a� + 
d� 
�� � 
a� − 
d� , �14�

with energies E��E�E��E�. Thus, the electron is delo-
calized but the hole is not. This is attributed to the smaller
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FIG. 2. �Color online� The four single-exciton eigenstates 
��,

�, 
��, 
�� vs interdot distance, expanded in the e-h basis 
a� �both
particles in the bottom QD�, 
b� �both particles in the top QD�, 
c�
�electron in the bottom and hole in the top QD�, and 
d� �electron in
the top and hole in the bottom QD�.
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FIG. 3. �Color online� Absorption spectra �logarithmic scale� at
various interdot distances d.
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effective mass of the electron, as well as to the more com-
plicated valence-band structure and the effect of strain,
which favor hole localization.24

The effect of dipole-dipole interactions for the shortest
distance, d=5.5 nm, is shown in Fig. 4. The peak positions
are the same, but their intensity is changed. The more pro-
nounced effect of dipole-dipole interactions in the nonlinear
response will be discussed in Sec. IV.

IV. TWO-EXCITON MANIFOLD AND THE 2D SPECTRA

We focus on the two-exciton states and their energies Ef.
The optical response is calculated using the NEE �Refs. 27

and 28� for the single- and two-particle variables �B̂m� and

�B̂mB̂n� �Appendix B�. The 2D spectra �Eqs. �C2� and �C9��
are calculated in terms of the single-exciton Green’s func-
tions and the exciton scattering matrix27 �Appendix C�.

All simulations were carried out using the SPECTRON

package.35 However, it is more convenient to analyze them
using the alternative sum-over-states expressions17

SI
�4�3�2�1��3,t2 = 0,�1� = i�

ee�

�ge�
�1

�1 + Ee� + i�e�g

���
f

�eg
�2� fe

�3�e�f
�4

�3 − Ef + Ee� + i� fe�

−
��eg

�2�e�g
�3 + �e�g

�2 �eg
�3��ge

�4

�3 − Ee + i�eg
	 ,

�15�

SIII
�4�3�2�1��3,�2,t1 = 0� = i�

ee�f

�eg
�1� fe

�2

�2 − Ef + i� fg

�� �ge�
�4 �e�f

�3

�3 − Ef + Ee� + i� fe�

−
�ge�

�3 �e�f
�4

�3 − Ee� + i�e�g
	 , �16�

where g denotes the ground state, e and e� are single exci-
tons, and f is a doubly excited state. �eg, � fe, and � fg are the
corresponding dephasing rates.

The kI signal shows resonances at single-exciton energies
along the �1 axis, at �1=−Ee�, and two types of resonances
along �3: at �3=Ee and �3=Ef −Ee�. Thus, the diagonal
peaks along �3=−�1=Ee reveal single-exciton states, simi-
lar to the linear absorption, while the off-diagonal cross
peaks reveal exciton coherences and biexciton contributions.
To see which excitons contribute to the formation of each
biexciton we turn to the Feynman diagrams, which represent
the sequences of interactions with the optical fields and the
state of the excitonic density matrix during the intervals be-
tween interactions.35 For the kI technique, there are three
diagrams, shown in Fig. 5: ground-state bleaching ��a��,
stimulated emission ��b��, and excited-state absorption ��c��.
The two-exciton states f formed by excitons e and e� only
show up in �c�. Thus, a cross peak at ��1=−Ee� , �3=Ef
−Ee�� indicates that exciton e� contributes to that biexciton.

The kIII spectrum provides complementary information.
As in kI, the resonances along �3 are at single-exciton ener-
gies �3=Ee� and at �3=Ef −Ee�. Along �2 though, the sig-
nal directly reveals two-exciton energies �2=Ef. There are
two corresponding Feynman diagrams, shown in Fig. 6,
which both describe excited-state absorption. The two-
exciton state is formed by excitons e and e� and results in
cross peaks at ��2=Ef , �3=Ee�� ��a�� or ��2=Ef ,�3=Ef
−Ee�� ��b��. We thus obtain information on the contributing
single-exciton states.

The variation in the kI signals with d is displayed in Fig.
7, and Fig. 8 shows the kIII signals. At d=17 nm, direct
excitons 
��= 
a� and 
�= 
b� result in two diagonal peaks at
E� and E in the kI spectrum. Biexcitons can be formed
either from excitons within the same QD, or from excitons in
different QDs. Because of the slight asymmetry between the
dots, there are two same-dot biexcitons �in the top or bottom
QD�, which create two closely spaced peaks, labeled A, in
the kIII spectrum �Fig. 8�a�� at Ef1

=2360 meV and Ef2
=2363 meV. In kI �Fig. 7�a��, they create two cross peaks at

1.25 1.26 1.27 1.28 1.29 1.3

Energy (eV)

(a)

(b)

FIG. 4. �Color online� Absorption spectrum with �a� and with no
�b� dipole-dipole interactions for the shortest interdot distance d
=5.5 nm.
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FIG. 5. Feynman diagrams for the kI technique.
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�3=Ef1
−E� and Ef2

−E. The absence of cross peaks at �3

=Ef1
−E and Ef2

−E� implies that biexciton f1�f2� is formed
by two 
a�-type �
b�-type� single excitons localized in the
bottom �top� QD. The third biexciton, labeled B, has energy
Ef3

=2453 meV, higher than the other two. As shown in the
kI spectrum, it creates peaks at both �3=Ef3

−E� and Ef3
−E, indicating that it is formed by one exciton on each QD
�
�� and 
��.

At d=10.2 nm, the indirect excitons 
��= 
c� and 
��
= 
d� show up on the diagonal �Figs. 7�b�, 7�c�, 8�a�, and
8�b��. In the kIII spectrum, there are three bound biexcitons,
labeled A and B, while the remaining cross peaks are due to
unbound two-exciton states at energies 2E� ,E�+E ,2E.
The first two biexcitons �A� are formed from excitons within
the same QD, as in d=17 nm case. The third biexciton �B� is
formed mostly from exciton 
�= 
b� and a small contribution
from 
��= 
c�, which is the first sign of electron delocaliza-
tion.

The 2D spectra at the critical distance of d=8.6 nm,
where the two lower excitons become degenerate, are shown
in Figs. 7�c� and 8�c�. The kIII spectrum has four biexciton
peaks at energies Ef1

=2381 meV and Ef2
=2383 meV �la-

beled A�, Ef3
=2457 meV �B�, and Ef4

=2523 meV �C�. The
remaining peaks, at energies Ee+Ee� �e ,e�=� , . . . ,��, are
due to unbound two-exciton states. The kI spectrum shows
that biexcitons A and B are mostly formed by the first two
excitons, which are now delocalized and may not be attrib-
uted to a single QD. The excitons are represented by bonding
and antibonding orbitals 
a�� 
b�. The last cross peak C con-
sists mostly of the two higher single-exciton states, the indi-
rect excitons 
c� and 
d�.

At shorter distances �d=6.8 nm and d=5.5 nm�, the elec-
trons become delocalized and yield richer spectra, as shown
in panels �d� and �e� of Figs. 7 and 8. Four sets of biexcitonic
peaks now appear in kIII. At d=5.5 nm we observe eight
biexcitonic peaks, at Ef1

=2407 meV, Ef2
=2411 meV �A�,

Ef3
=2424 meV, Ef4

=2440 meV, Ef5
=2449 meV �D�, Ef6

=2490 meV �B�, and Ef7
=2560 meV, Ef8

=2574 meV �C�.
Looking at region �I� of the kI spectrum �Fig. 7�b�� one can
see that biexcitons f1 and f2 of group A and f3 of group D are
formed mostly from the bonding orbitals 
��= 
b�+ 
c� and

�= 
a�+ 
d�. Similarly, regions �I� and �II� show that f4 and
f5 of group D are formed mostly from the antibonding ones

��= 
b�− 
c� and 
��= 
a�− 
d�. Region �II� also suggests that
all single-exciton states contribute significantly to the forma-
tion of biexcitons B and C.

In Fig. 9 we display the kI spectra calculated by neglect-
ing dipole-dipole interactions at short distances, d=6.8 and

d=5.5 nm �compare with panels �d� and �e� of Fig. 7�. The
lowest excitonic peak on the diagonal becomes stronger.
Biexcitons A, formed by bonding orbitals, redshifts while the
remaining biexcitonic peaks remain at the same position.

V. CONCLUSIONS

We have studied the single and double excitons in two
coupled quantum dots and their variation with interdot dis-
tance. Our calculation takes into account both carrier tunnel-
ing and exciton migration via dipole-dipole interactions. The
absorption spectra were used to classify the single-exciton
states in terms of localized e-h pairs. The 2D spectra in di-
rections kI=−k1+k2+k3 and kIII= +k1+k2−k3 were calcu-
lated by means of NEE. Analysis of these spectra using the
corresponding SOS expressions, allowed us to classify the
biexcitons according to their single-exciton components. At
large distances, only direct excitons are active, and two types
of biexcitons are formed, either within or at different QDs.
At shorter distances, we also see biexcitons created from
indirect excitons. At distances where electron interdot tun-
neling becomes noticeable, additional biexcitonic peaks ap-
pear, providing a clear signature of electron delocalization.
Exciton hopping is significant only at short distances, where
it affects the intensity of the excitonic peaks and shifts the
biexciton energies.
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APPENDIX A: RECAST OF THE ELECTRON-HOLE
HAMILTONIAN USING EXCITONIC VARIABLES

By introducing the electron-hole pair operators �Eq. �10��
Chernyak and Mukamel recasted Hamiltonian �9�, as well as
the commutation relations of these operators, in terms of an

infinite series of normally ordered operators B̂† and B̂.25,28,29

Since the Hamiltonian conserves the number of particles,

each term contains an equal number of creation �B̂†� and

annihilation �B̂� operators. For computing the third-order re-
sponse, the Hamiltonian can be truncated at fourth order,

H = �
mn

hmnB̂m
† B̂n + �

mnkl

Umn,klB̂m
† B̂n

†B̂kB̂l

− �
m

��m
� · E�t�B̂m

† + H.c.� �A1�

where electron-hole pairs are denoted with Latin indices
without subscript m= �m1 ,m2�, n= �n1 ,n2�, etc. The param-
eters hmn and Umn,kl of the effective Hamiltonian can be de-
termined by comparing successively order by order the ma-
trix elements of Hamiltonians �9� and �A1� in the space of
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FIG. 6. Feynman diagrams for the kIII technique.
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FIG. 7. �Color online� Absolute value of the kI signal for xxxx polarization at several interdot distances d. Regions denoted as I and II
are magnified in the center and right columns, respectively. Single-exciton energies are marked with dashed lines and biexciton peaks are
circled.
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one, two, three, etc. electron-hole pair excitations. This is
possible because normally ordered N creation and N annihi-
lation operators do not contribute in the subspaces of N−1
and smaller number of excitations. Thus, in the one electron-
hole pair excitation subspace we obtain

hmn = tm1n1

�1� �m2n2
+ �m1n1

tm2n2

�2� − Vm1m2

eh �m1n1
�m2n2

+ Vm1m2,n1n2

F �Rm1
Rm2

�Rn1
Rn2

�1 − �Rm1
Rn1

� . �A2�

Diagonal elements �m=n� describe the electron-hole pair en-
ergy, given as the sum of electron and hole kinetic energies
reduced by the electron-hole Coulomb attraction. Off-
diagonal elements �m�n� describe electron, hole, or exciton
hopping between adjacent sites.

Similarly, to describe the one and the two electron-hole
pair subspace we need the quartic term,

Umn,kl = Ūmn,kl + Fmn,kl, �A3�

where

Ūmn,kl =
1

4
�Vm1n1

ee �m1l1
�n1k1

�m2k2
�n2l2

+ Vm2n2

hh �m1k1
�n1l1

�m2l2
�n2k2

� −
1

4
�tm1k1

�1� �m2k2
�n1l1

�n2l2

+ �m1k1
tm2k2

�2� �n1l1
�n2l2

+ �m1k1
�m2k2

tn1l1
�1� �n2l2

+ �m1k1
�m2k2

�n1l1
tn2l2
�2� � . �A4�

We further define the matrix F by the equation,

Fmn,kl + Fmn,lk − 2�
pq

Pmn,pqFpq,kl = 0. �A5�

P is tetradic matrix defined as

Pmn,pq =
1

2
�m1q1

�m2p2
�n1p1

�n2q2
+

1

2
�m1p1

�m2q2
�n1q1

�n2p2
.

�A6�

The U matrix is invariant to the addition of any matrix F that
satisfies Eq. �A5� and it is thus not uniquely defined. This
freedom arises since Hamiltonians �9� and �A1� are only re-
quired to coincide in our physically relevant subspace of one
and two e-h pair excitations but may differ in higher mani-
folds.

Similarly, the commutation relation of the electron-hole
particle operators can be expanded in a series of normally

ordered operators B̂† and B̂. For the third-order response, this
can be truncated at quadratic order,

�B̂m,B̂n
†� = �mn − 2�

pq

Pmp,nqB̂p
†B̂q, �A7�

where �mn=�m1n1
�m2n2

. The P matrix is responsible for the
deviation from boson statistics.

APPENDIX B: THE NONLINEAR EXCITON EQUATIONS

The nonlinear optical response is calculated using the
Heisenberg equation of motion for the electron-hole operator
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FIG. 8. �Color online� Absolute value of the kIII signal for xxxx
polarization at various interdot distances d. Arrows mark biexciton
contributions.
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B̂m, i d
dt �B̂m�= ��B̂m ,H��, obtained by Eqs. �A1� and �A7�,

i
d

dt
�B̂m� = �

n

hmn�B̂n� + �
nkl

Vmn,kl�B̂n
†B̂kB̂l� − �m

� · E�t�

+ 2�
nkl

�n
� · E�t�Pmk,nl�B̂k

†B̂l� . �B1�

The last term in the right-hand side is known in the context
of the simpler semiconductor Bloch equations as phase-space
filling.30 The second term describes exciton-exciton interac-
tions where V is given by

Vmn,kl = Umn,kl + Umn,kl − 2�
p

Pmn,pkhpl − 2�
pq

Pmn,pqUpq,kl

= Ūmn,kl + Ūmn,kl − 2�
p

Pmn,pkhpl − 2�
pq

Pmn,pqŪpq,kl.

�B2�

Note that it is independent of the matrix F, Eq. �A5�.
Similarly, for the two-particle variable, �B̂mB̂n�, to second

order in the optical field,

i
d

dt
�B̂mB̂n� = �

kl

hmn,kl
�2� �B̂kB̂l� − ��m

� · E�t��B̂n� + �B̂m��n
� · E�t��

+ 2�
kl

�l
� · E�t�Pmn,kl�B̂k� , �B3�

where

hmn,kl
�2� = �mkhnl + �nlhmk + Vmn,kl. �B4�

The diagonal elements of h�2� represent two electron-hole
pair energies, while Vmn,mn describes the biexciton binding
energy. To see that, we use the definition of the electron-hole

pair operators �Eq. �10�� the anticommutation relations �3�
and �4�, and Eqs. �A2�–�A6� to recast the V matrix in the
form

Vmn,kl = Vm1n1

ee �m1l1
�n1k1

�m2k2
�n2l2

+ Vm2n2

hh �m1k1
�n1l1

�m2l2
�n2k2

+
1

2
�Vm1n2k1l2

F �n1l1
�m2k2

+ Vm1n2l1k2

F �n1k1
�m2l2

�

+
1

2
�Vn1m2l1k2

F �m1k1
�n2l2

+ Vn1m2k1l2
F �m1l1

�n2k2
�

−
1

2
�Vm1n2

eh + Vn1m2

eh ��m1k1
�n1l1

�m2k2
�n2l2

−
1

2
�Vm1n2

eh

+ Vn1m2

eh ��m1l1
�n1k1

�m2l2
�n2k2

. �B5�

This expression, which is the same as Eq. �20� in Ref. 25,
clearly shows that V describes Coulomb interactions between
the particles that constitute the two pairs.

Neglecting incoherent exciton transport, we can make the
factorization,36

�B̂k
†B̂l� = �B̂k

†��B̂l� and �B̂n
†B̂kB̂l� = �B̂n

†��B̂kB̂l� . �B6�

By expanding the equations of motion in orders of the opti-

cal field E�t�, and defining Bm= �B̂m�, Ymn= �B̂mB̂n�, we fi-
nally obtain the nonlinear exciton equations,27,28

i
d

dt
Bm

�1� = �
n

hmnBn
�1� − �m

� · E�t� , �B7�
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FIG. 9. �Color online� Absolute value of the kI signal for xxxx polarization without dipole-dipole interactions.
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i
d

dt
Ymn

�2� = �
n

hmn,kl
�2� Ykl

�2� − ��m
� · E�t�Bn

�1� + Bm
�1��n

� · E�t��

+ 2�
kl

�l
� · E�t�Pmn,klBk

�1�, �B8�

i
d

dt
Bm

�3� = �
n

hmnBn
�3� + �

nkl

Vmn,klBn
�1��Ykl

�2�

+ 2�
nkl

�n
� · E�t�Pmk,nlBk

�1��Bl
�1�. �B9�

APPENDIX C: THE 2D SIGNALS

The NEE equations may be solved using the single-
exciton Green’s functions and the exciton scattering matrix.27

The polarization is then expressed in terms of the response
function,

V�4�t� =� dt1dt2dt3S�4�3�2�1�t3,t2,t1�

�E�3�t − t3�E�2�t − t3 − t2�E�1�t − t3 − t2 − t1� .

�C1�

The response function in the kI=−k1+k2+k3 direction is
given by17

SI
�4�3�2�1��3,t2,�1� = 2i �

e1,e2,e3,e4

�e1

�1�e2

�2��e3

�3��e4

�4

� Ie1

� �t2�Ie2
�t2�Ie1

� �− �1�Ie4
��3�

� �e4e1e2e3
��3 + Ee1

+ i�e1
�

� G0e3e2
��3 + Ee1

+ i�e1
� , �C2�

where �1 , . . . ,�4 are the polarizations of the optical pulses,
e1 , . . . ,e4 label eigenstates of the single-exciton block of the

Hamiltonian with energies Ee and dephasing rates �e,

Ie�t� � �e
Ĝ�t�
e� = − i��t�e−iEet−�et, �C3�

Ie�	� � �e
Ĝ�	�
e� = �	 − Ee + i�e�−1, �C4�

and G�t� is the single-exciton Green’s function. The Fourier
transform is defined as

G�	� =� dt exp�i	t�G�t� , �C5�

G�t� =� d	

2�
exp�− i	t�G�	� . �C6�

Finally,

G0e2e1
�	� � �e1e2
Ĝ0�	�
e1e2� =

1

	 − Ee2
− Ee1

+ i��e2
+ �e1

�

�C7�

is the Green’s function representing noninteracting two exci-
tons, and the scattering matrix is given by

��	� = �I − VG0�	��−1VG0�	��I − P�G0
−1�	� − PG0

−1�	� ,

�C8�

where V is given in Eq. �B5�, and I is the tetradic identity
matrix in the two-exciton space.

Similarly, the response in the kIII direction is given by17

SIII
�4�3�2�1��3,�2,t1� = 2 �

e1,e2,e3,e4

�e1

�1��e2

�2��e3

�3�e4

�4

� Ie1

� �t1�Ie4
��3�Ie3

� ��2 − �3�

� ��e4e3e2e1
��3 + Ee3

+ i�e3
�G0e2e1

��3

+ Ee3
+ i�e3

� − �e4e3e2e1
��2�G0e2e1

��2�� .

�C9�
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